Electrochemical detection of DNA hybridization using biometallization.
نویسندگان
چکیده
We demonstrate the amplified detection of a target DNA based on the enzymatic deposition of silver. In this method, the target DNA and a biotinylated detection DNA probe hybridize to a capture DNA probe tethered onto a gold electrode. Neutravidin-conjugated alkaline phosphatase binds to the biotin of the detection probe on the electrode surface and converts the nonelectroactive substrate of the enzyme, p-aminophenyl phosphate, into the reducing agent, p-aminophenol. The latter, in turn, reduces metal ions in solutions leading to deposition of the metal onto the electrode surface and DNA backbone. This process, which we term biometallization, leads to a great enhancement in signal due to the accumulation of metallic silver by a catalytically generated enzyme product and, thus, the electrochemical amplification of a biochemically amplified signal. The anodic stripping current of enzymatically deposited silver provides a measure of the extent of hybridization of the target oligomers. This biometallization process is highly sensitive, detecting as little as 100 aM (10 zmol) of DNA. We also successfully applied this method to the sequence-selective discrimination between perfectly matched and mismatched target oligonucleotides including a single-base mismatched target.
منابع مشابه
Using an electrochemical nanobiosensor based on titanium carbide-carbon nanotubes polymeric nanocomposite for the epithelialovarian cancer early detection
Background & Aim: Ovarian cancer is the most lethal among female malignancies. So far, treatment improvements have affected patient survival, but it is still more important to provide an early diagnosis that can detect the disease in its early stages. Therefore, introducing a rapid, accurate, and low-cost method to disease detection can be important and necessary. Methods: This study introduce...
متن کاملRapid and sensitive electrochemical detection of DNA with Silver nanoparticle dispersed poly (9, 9-dioctylfluorene-ran-phenylene) nanocomposites
In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver nanoparticle (Ag) embedded poly(9,9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive platform and DNA hybridization technique. The new polymer was synthesized from 9,9-dioctylfluorene and 1,3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reacti...
متن کاملRecent trends in electrochemical DNA biosensor technology
Recent trends and challenges in the electrochemical methods for the detection of DNA hybridization are reviewed. Electrochemistry has superior properties over the other existing measurement systems, because electrochemical biosensors can provide rapid, simple and low-cost on-field detection. Electrochemical measurement protocols are also suitable for mass fabrication of miniaturized devices. El...
متن کاملReal-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.
Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable...
متن کاملA sandwich-type DNA electrochemical biosensor for hairpin-stem-loop structure based on multistep temperature-controlling method
A highly sensitive and selective method for amplified electrochemical detection for hairpin-stem-loop structured target sequences was developed based on the temperature regulation of DNA hybrids on a sandwich-type electrochemical DNA sensor. Multistep hybridization was applied to promote the hybridization efficiency of each section of sandwich structure. The results showed that both multistep a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 77 2 شماره
صفحات -
تاریخ انتشار 2005